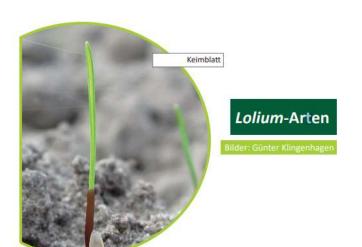
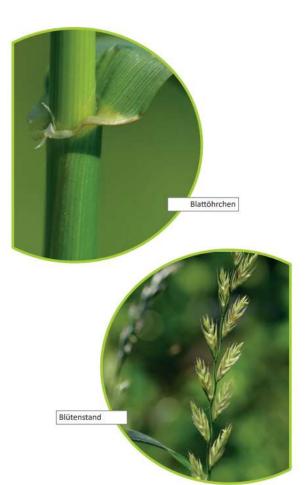


Weidelgräser, der neue Supergau am Acker?

OÖ Pflanzenschutz-Aktuell 2025 Wels, 7. Jänner 2025 P. Krennwallner

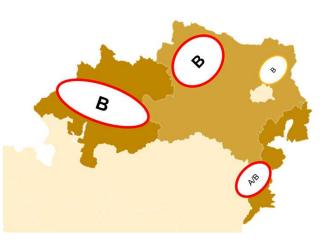

Weidelgräser (Lolium Arten)

- Italienisches/Welsches Weidelgras(Lolium multiflorum)
- Deutsches WG (Lolium perenne) als bedeutendste Art bei uns:
 - schnellwüchsig, überjährig, Horst-bildend
 - bevorzugt hohe Luftfeuchtigkeit, niederschlagsreiche Standorte
 - kommt auf alle Böden vor
 - keimen ganzjährig (Herbst und Frühjahr)
- Sehr konkurrenzstark
 - höhere N-Effizienz als Weizen
 - 2 x so viel Biomassebildung bei gleiche N-Menge
 - 1 Weidelgras-Pflanze / m² = 1-2
 Weizenähren / m² weniger
 - 20 Pfl/m² \rightarrow 50% Ertrag
 - Ökonomische Schadschwelle 8 Pfl/m²


Erkennungsmerkmale

Sowohl das deutsche als auch das Welsche Weidelgras lassen sich durch ihre schmalen Blätter, geriefte Blattoberseite sowie die stark glänzende und gekielte Unterseite bestimmen. Der Triebgrund beider Arten ist rötlich gefärbt (Abb.). Blätter und Stängel der zwei Arten sind unbehaart und die Blatthäutchen relativ kurz. Beide Arten weisen zudem rispenförmige Samenstände auf.

Unterscheiden lassen sich die beiden Arten u.a. anhand der Blattanlage. Diese ist beim Deutschen Weidelgras gefaltet, beim Welschen Weidelgras gerollt. Die Blattöhrchen sind beim Deutschen etwas kürzer als beim Welschen Weidelgras. Das Deutsche Weidelgras besitzt zudem unbegrannte Spelzen, während die Spelzen beim Welschen Weidelgras begrannt sind. Anders als bei der Gemeinen Quecke (Elymus repens) sind bei Weidelgras-Arten die Ährchen der Blütenachse immer mit der Schmalseite zugewandt.


Weidelgras – der Steckbrief

- Bedeutendes Ungras in West-, Mittel- und Osteuropa
- Nutzung auch als Feldfutter, Untersaaten, Vorkommen auf Feldränder und Ruderalflächen, Wiesen
- Kann in Winterungen und Sommerungen auftreten
- Alternativer Wirt für Krankheiten (Roste, BaYDV, Rhizoctonia, Mutterkorn)
- Bekämpfung mit Herbiziden (Getreide):
 - Herbst Bodenaktiv: Flufenacet (15/K3), Prosulfocarb, CTU,
 - Frühjahr Blattaktiv Pinoxaden(1/A), Mesosulfuron, Iodosulfuron, Pyroxulam (2/B),
- Herbizidresistenz ist nachgewiesen (A,B, A+B!) und verbreitet sich schnell:
 - häufig beide Wirkmechanismen in einer Pflanze betroffen
 - flächenanteilig ist das Weidelgras global das bedeutendste Ungras mit Herbizidresistenzen
 - Fremdbefruchter, Windbestäubung -> rasche Ausbreitung Resistenzen Hybridisierung möglich
 - 200-1500Samen/Pflanze > 1000 Samen/m²
 - Samen bleiben bis zur Ernte an der Pflanze
 - Samen im Boden 2-5 Jahre keimfähig

Übersicht Resistenzmonitoring Ungräser im Getreide

Windhalm (seit 2010)

Längste Monitoring-historie
Regionen weiten sich aus
Bisher fast ausschließlich HRAC
B betroffen
Hohe Resistenzgrade
Hohe "Dunkelziffer"

Ackerfuchsschwanz (seit 2017)

Etwas geringerer Probenumfang und Monitoringdauer

Teilweise erst beginnende Resistenz

HRAC A häufiger als B

Weidelgräser (seit 2022)

eingeschränkte Probenanzahl
Multiresistente Biotypen bereits
im erst Jahr des Monitorings!
Hohe Resistenzgrade
Resistenzstatus am
problematischten!

Achtung:

Die multiple Resistenz ist bei Weidelgräsern bereits weit verbreitet

sample - ID	2023 sample location	region		population	Threated coverage%	DEN	DIMI	DIM II	ALSI	ALS II	ALS III	ALS IV	→ Den + ALS II
L23-055	AT-2048 Untermixhitz	AT	AT	55	100	4	0	0	1	0	0	1	1
L23-056	AT-3392 Gerolding	AT	AT	56	100	4	- 5	0	0	0	0	0	0
L23-094	AT-4952 Wenig in Innkreis	ΑT	AT	94	100	3	0	0	5	5	5	0	4
L23-096	AT-3593 Altpölla	AT	ΑT	96	100	0	0	0	0	0	0	0	0
L23-097	AT-4614 Marchtrenk	AT	ΑT	97	100	0	0	0	1	0	0	0	0

	2024			% age	Н	IRA	C 1/	Α		HR	AC 2	2/B		
sample - ID	2024 sample location	region	country	untreated coverage	DEN	FOP II	DIMI	DIM II	ALSI	ALS II	ALS III	ALS IV	ALS V	DEN+ALSII
L24-019	AT-7304 Nebersdorf	В	AT	100	0	1	1	0	0	0	0	0	4	0
L24-095	AT-7452 Kleinmutschen	В	AT	100	4	5	5	0	3	3	1	0	5	4
L24-096	AT-3593 Altpölla	NÖ	AT	100	0	0	0	0	0	0	0	0	0	0
A24-052	AT-4614 Marchtrenk	OÖ	AT	7,5	0	0	0	0	0	0	0	0	0	0
L24-047	AT-4760 Raab	OÖ	AT	100	5	5	5	1	5	5	5	5	5	5
L24-048	AT-4760 Raab	ОÖ	AT	100	5	5	5	1	4	5	4	3	5	4
L24-085	AT-4616 Weißkirchen	0Ö	AT	100	4	2	5	0	5	5	5	5	5	3
L24-086	AT-4271 St. Oswald	ОÖ	AT	100	3	2	4	0	5	5	5	5	5	2
L24-087	AT-4654 Bad Wimsbach	OÖ	AT	100	4	4	5	0	5	5	5	3	5	4
L24-088	AT-4483 Hargelsberg	OÖ	AT	100	5	5	5	1	5	5	5	1	5	4
L24-089	AT-4712 Michaelabach	ΟÖ	AT	100	5	5	5	2	5	4	5	0	5	4
L24-090	AT-4632 Pichl bei Wels	OÖ	AT	100	0	4	0	0	0	0	0	0	0	0
L24-091	AT-4490 St. Florin	ОÖ	AT	100	2	5	0	0	0	0	0	0	0	0
L24-092	AT-4407 Dietach	OÖ	AT	100	5	4	5	0	5	5	5	5	5	5
L24-093	AT-4407 Dietach	ОÖ	AT	100	5	4	5	0	5	5	5	0	5	1
L24-094	AT-4656 Laakirchen	ΟÖ	AT	100	5	5	5	1	5	5	5	4	5	5

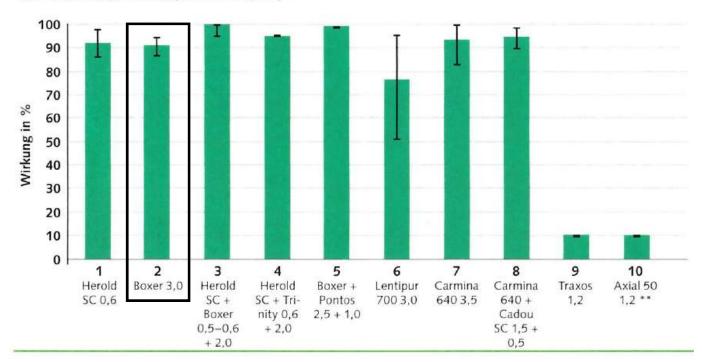
Was sollte der Landwirt wissen, um die optimale Bekämpfungsstrategie wählen zu können?

Das Monitoring ist nicht repräsentativ aber zeigt Problemfelder deutlich auf.

In Regionen mit Resistenzen sollen Landwirte, die in der Vergangenheit Wirkungsprobleme hatten, spezielle Beratung einholen.

Schlag/Betriebshistorie erstellen:

Welche Wirkmechanismen (HRAC) habe ich die letzten 10(+) Jahre auf meinen Flächen in <u>allen Kulturen</u> eingesetzt . Bei jüngeren Pachtflächen Vorbewirtschafter fragen.


Resistenzstatus erheben – Samenproben von Problemflächen ziehen

Syngenta Gräsermonitoring - Teilnahme kostenlos über Syngenta Mitarbeiter/Beratung 0800-207181

www.agri42.de Kostenpflichtig, Information auf Website inkl. Kosten ab € 119.- - € 398.-/Probe

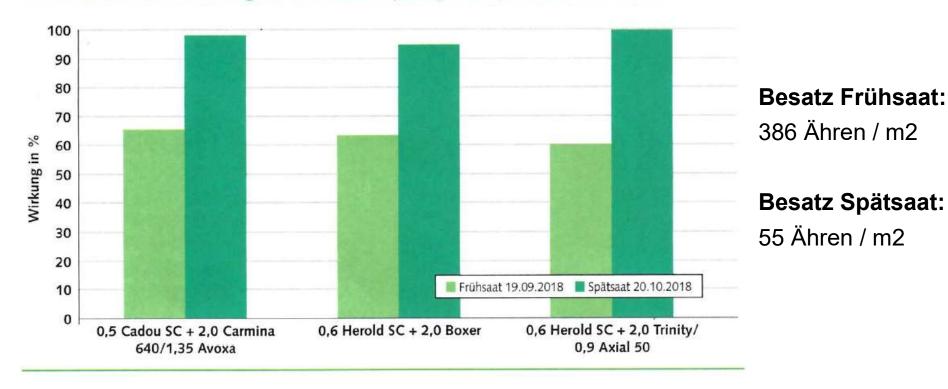
Flufenacet und Prosulfocarb sind die Grundsteine der erfolgreichen Weidelgras-Bekämpfung

Abb. 1: Wirkung von Herbiziden bei Herbstanwendung gegen Weidelgras im Winterweizen (2016–2019)

Quelle: Meinlschmidt & Dicke, 2021: Wie Weidelgras bekämpfen? Getreidemagazin 5/2021, 28 – 33.

Aus den Untersuchungen lässt sich folgern, dass der Wirkstoff Flufenacet (enthalten in Fence, Cadou, Herold, Pontos u.a.) eine Schlüsselposition bei der Bekämpfung von resistentem Welschem Weidelgras ein-

nimmt. Auch Prosulfocarb ist als Baustein für die Bekämpfung des resistenten Weidelgrases essenziell. Kombinationen von Flufenacet und/oder Prosulfocarb mit anderen Wirkstoffen können die Wirkungsgrade noch weiter erhöhen. So erreicht die


Kombination aus dem rein flufenacethaltigen Präparat Fence mit Trinity sehr hohe Wirkungsgrade und macht diese Mischung besonders attraktiv. Ebenso verhält es sich mit dem rein prosulfocarbhaltigen Präparat Boxer, wenn es mit Pontos (Flufenacet + Picolinafen) kombiniert wird.

Quelle: Dicke, Getreidemagazin 4 2019, 18-21.

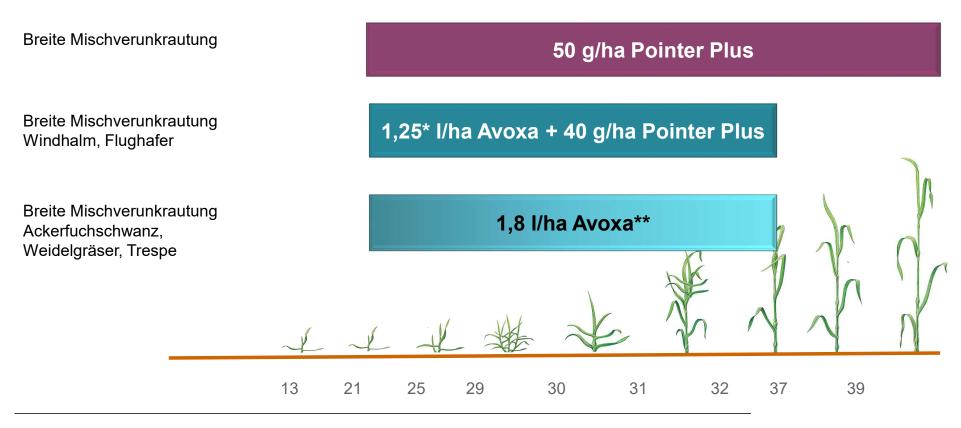

Der Aussaattermin hat einen deutlich positiven Einfluss auf den Weidelgras-Besatz und den Wirkungsgrad der Herbizid-Maßnahme

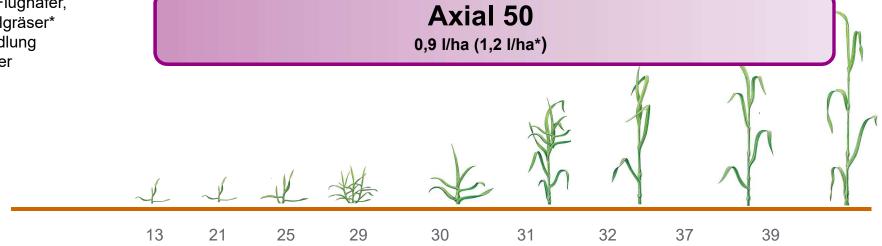
Abb. 3: Einfluss der unterschiedlichen Aussaattermine von Winterweizen auf den Auflauf von Weidelgras und Bekämpfung, Frühjahrsbonitur 2019

Quelle: Meinlschmidt & Dicke, 2021: Wie Weidelgras bekämpfen? Getreidemagazin 5/2021, 28 – 33. Frühjahrsbehandlungen nur in der Frühsaat.

Getreideherbizide 2025 - Empfehlung

^{*} In Regionen mit verminderter Windhalmsensitivität(Resistenz) Aufwandmenge auf 1,35 l/ha erhöhen

Avoxa nicht in Gerste, Hafer zugelassen


^{** =} in Abhängigkeit des Unkrautspektrums Ergänzung mit dikotylem Partner sinnvoll bitte das Dikotylenspektrum von Avoxa beachten;

Einsatzempfehlung in allen Getreidearten inkl. Gerste (ausgen. Hafer)

Windhalm, Flughafer, Afu, Weidelgräser und Unkräuter

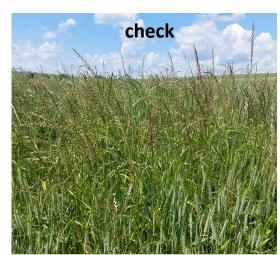
Axial Komplett
1,0 I/ha (1,3 I/ha)

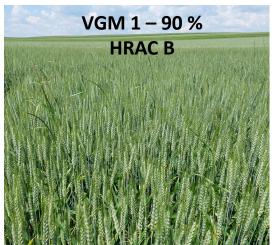
Windhalm, Flughafer, Afu*, Weidelgräser* Nachbehandlung gegen Gräser

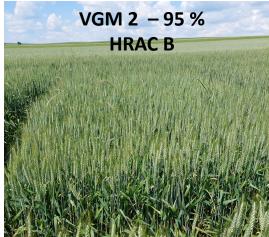
^{*}ausreichender Bekämpfungserfolg nur bei frühem Einsatz

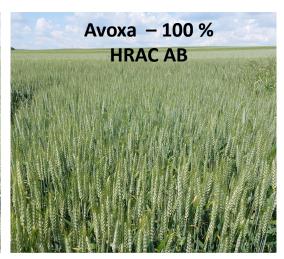
Winterspritzung ("Nikolausspritzung")

- Blattapplikation in der Winterruhe im Dezember oder Januar
- Leichte Fröste sind kein Problem, max. -2°C
- Kein Dauerfrost zum Applikationszeitpunkt
- Rel. Luftfeuchtigkeit: ca. 60%
- Der Wirkstoff muss aktiv in die Pflanze
- Wirkungsvoller Baustein im Resistenzmanagement
- Hilfreich bei metabolischer Resistenz
- Der Wirkstoff wird bei kühlen Temperaturen langsamer metabolisiert und kann trotz metabolischer Resistenz noch Wirkungsgrade erzielen
- Frostschutz: soluMOP® (K+S) Kaliumchlorid
 - => Verbessert die Frosthärte bei Blattapplikation
 - => senkt den Gefrierpunkt des Spritzwassers




Kleine Rädchen zur Wirkungsverbesserung von Blattaktiven Herbiziden (Frühjahr)


- Optimaler (früher) Bekämpfungszeitpunkt "Winterspritzung"
- Luftfeuchte nicht unter 60%
- Unkraut Herbizid weglassen bzw. getrennt durchführen
- Netzmittelzusatz (RME Produkt), Bittersalz
- Applikationstechnik:
 - Wassermenge erhöhen (langsamer fahren) auf 250-300 l/ha
 - Richtige Düsenwahl (Doppelinjektordüse)


Diese Maßnahmen unterstützen die Leistung der Produkte und können zwar verminderte Sensitivität nicht komplett ausgleichen, aber doch einige %-Mehrleistung (Wirkung) erzielen. Ziel ist es 97% "Wirkungsgrad" zu erreichen!

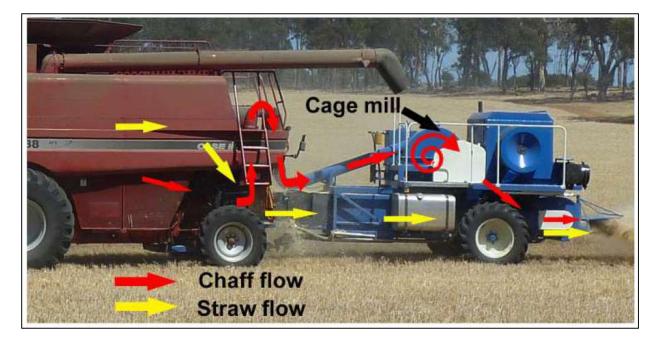
Weidelgrasbekämpfung in Niederösterreich 2023 sensitiver Standort

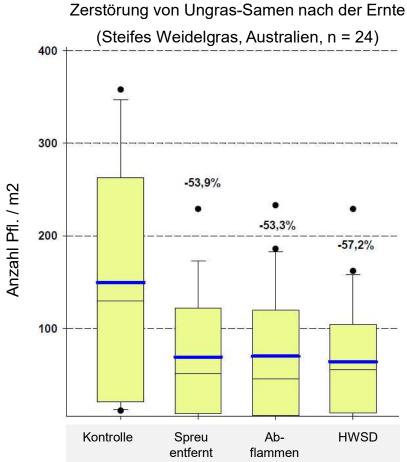
Syngenta-Exaktversuche Saison 2023, Projekt HTCE314C-2023AT, Winterweizen, Altpölla (NÖ), Abschlussbonitur

Pflanzenbauliche u. andere Maßnahmen bei Problemflächen mit Ackerfuchsschwanz und Weidelgräsern

Weiteren Sameneintrag/Samenbank in den Boden verhindern/reduzieren Stabilisierung – 97% "Wirkungsgrad" durch alle Maßnahmen notwendig Ackerbau- und pflanzenbauliche Maßnahmen ausschöpfen

- Fruchtfolgegestaltung Sommerungen und Hackfrüchte wo Bekämpfung möglich ist einbauen
- Abstimmung HRAC über Fruchtfolge
- Herbstbehandlung im Getreide
- Saattermin (später)
- Falsches Saatbeet
- "Saubermachen" mit Glyphosat vor Saat
- Konkurrenzstarke Sorten mit rascher Jugendentwicklung (Hybridgerste)
- Pflügen und dann mehrere Jahre (4-5) pfluglos arbeiten


Was sonst noch wichtig wäre:



- Mähdrescherreinigung bei überbetrieblichem Einsatz gegen Verschleppung ist Pflicht und gut investierter Aufwand
- Teilflächen mit Besatz mulchen (Aussamen verhindern)
- Keine Untersaaten mit Weidelgräsern durchführen
- Auf Reinheit/Qualität des Begrünungssaatgut (Besatz mit Weidelgräser) achten
- Entfernung von überwinternden Weidelgräsern aus Begrünung etc. →
 Glyphosat sicherer als mechanisch (Wiederantrieb) vor Sommerungen

Ein Blick über den Tellerrand: Zerstörung der Weidelgras-Samen nach der

Ernte, Australien

Verändert nach Walsh et al., 2017

HWSD = Harrington Weed Seed Destructor

Herbst Herbizideinsatz vor dem Umbruch

ÜBERSICHT 1: DIE LEISTUNG DER WIRKSTOFFE IM VERGLEICH

Wirkstoff	HRAC	1	Subst.			
		Acker- fuchs- schwanz	Wind- halm	Weidel- gras	-kandidat	
Flufenacet	15	**			jā	
Aclonifen	32	•	••	-	ja	
Beflubutamid	12	-	••	-	nein	
СТИ	5	••	••	••	ja	
Diflufenican	12	Wirkt nick Mischunge	ja			
Flumioxazin	14	•	••	-	ja	
Pendimethalin	3		•	•	ja	
Prosulfocarb	15	••	•••	•	nein	

Wirkung: ••• = sehr gut, •• = gut/befriedigend, • = Teilwirkung, - = keine

top agrar; Quelle: TLLLR

Zukünftig Boxer (Prosulfocarb) als Basiswirkstoff für Gräserbekämpfung im Herbst

- Mit Flufenacet wird ein wichtiger Wirkstoff wegfallen
- Boxer (Prosulfocarb) wird eine zentrale Rolle in der Gräserbekämpfung übernehmen
- Boxer, das Basisprodukt für Mischungspartner je nach Kultur und Zielungras

